1. IDC. IDC reports strong growth in the worldwide wearables market, led by holiday shipments of smartwatches, wrist bands, and ear-worn devices [Internet]. Framingham (MA): IDC Corporate; 2019 [cited at 2020 Apr 15]. Available from:
https://www.idc.com/getdoc.jsp?containerId=prUS44901819
3. Swan M. The Quantified Self: fundamental disruption in big data science and biological discovery. Big Data 2013;1(2):85-99.
4. Prince JD. The Quantified Self: operationalizing the quotidien. J Electron Resour Med Libr 2014;11(2):91-9.
9. Khakurel J, Melkas H, Porras J. Tapping into the wearable device revolution in the work environment: a systematic review. Inf Technol People 2018;31(3):791-818.
13. Farrahi V, Niemela M, Kangas M, Korpelainen R, Jamsa T. Calibration and validation of accelerometer-based activity monitors: a systematic review of machine-learning approaches. Gait Posture 2019;68:285-99.
14. Bloss R. Wearable sensors bring new benefits to continuous medical monitoring, real time physical activity assessment, baby monitoring and industrial applications. Sens Rev 2015;35(2):141-5.
16. Witte AK, Blankenhagel KJ, Korbel JJ, Zarnekow R. How accurate is accurate enough? An evaluation of commercial fitness trackers for individual health management. Proceedings of the Americas Conference on Information Systems (AMCIS2019); 2019 Aug 15–17. Cancun, Mexico.
18. Dutta-Bergman MJ. Primary sources of health information: comparisons in the domain of health attitudes, health cognitions, and health behaviors. Health Commun 2004;16(3):273-88.
19. Holzinger A, Dorner S, Fodinger M, Valdez AC, Ziefle M. Chances of increasing youth health awareness through mobile wellness applications. In: Leitner G, Hitz M, Holzinger A, editors. HCI in work and learning, life and leisure. Heidelberg: Springer; 2010. p. 71-81.
20. Grifantini K. How’s my sleep?: personal sleep trackers are gaining in popularity, but their accuracy is still open to debate. IEEE Pulse 2014;5(5):14-8.
21. Etkin J. The hidden cost of personal quantification. Journal of Consumer Research 2016;42(6):967-84.
23. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 2003;35(8):1381-95.
24. Rabin R, Gudex C, Selai C, Herdman M. From translation to version management: a history and review of methods for the cultural adaptation of the EuroQol five-dimensional questionnaire. Value Health 2014;17(1):70-6.
25. Butler J, Kern ML. The PERMA-Profiler: a brief multidimensional measure of flourishing. Intl J Wellbeing 2016;6(3):1-48.
26. Stiglbauer B, Weber S, Batinic B. Does your health really benefit from using a self-tracking device? Evidence from a longitudinal randomized control trial. Comput Human Behav 2019;94:131-9.
28. Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 1976;4(2):97-110.
29. Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 1989;28(2):193-213.
30. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav 1983;24(4):385-96.
31. Ware J Jr, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care 1996;34(3):220-33.
32. John OP, Srivastava S. The Big Five trait taxonomy: history, measurement, and theoretical perspectives. In: Pervin LA, John OP, editors. Handbook of personality: theory and research. 2nd ed. New York (NY): The Guilford Press; 1999. p. 102-38.
34. Cheong IY, An SY, Cha WC, Rha MY, Kim ST, Chang DK, et al. Efficacy of mobile health care application and wearable device in improvement of physical performance in colorectal cancer patients undergoing chemotherapy. Clin Colorectal Cancer 2018;17(2):e353-e362.
42. Ravi D, Wong C, Lo B, Yang GZ. A deep learning approach to on-node sensor data analytics for mobile or wearable devices. IEEE J Biomed Health Inform 2017;21(1):56-64.
43. Bai J, Sun Y, Schrack JA, Crainiceanu CM, Wang MC. A two-stage model for wearable device data. Biometrics 2018;74(2):744-52.
44. de Quadros T, Lazzaretti AE, Schneider FK. A movement decomposition and machine learning-based fall detection system using wrist wearable device. IEEE Sens J 2018;18(12):5082-9.
45. Shashikumar SP, Shah AJ, Li Q, Clifford GD, Nemati S. A deep learning approach to monitoring and detecting atrial fibrillation using wearable technology. Proceedings of 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI); 2017 Feb 16–19; Orlando, FL. p. 141-4.
46. Varatharajan R, Manogaran G, Priyan MK, Sundarasekar R. Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Cluster Comput 2018;21(1):681-90.