1. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2022 79(17):e263-421.
https://doi.org/10.1016/j.jacc.2021.12.012
2. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Bohm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021 42(36):3599-726.
https://doi.org/10.1093/eurheartj/ehab853
3. Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GM, Coats AJ. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res 2023 118(17):3272-87.
https://doi.org/10.1093/cvr/cvac013
4. Joseph P, Dokainish H, McCready T, Budaj A, Roy A, Ertl G, et al. A multinational registry to study the characteristics and outcomes of heart failure patients: the global congestive heart failure (G-CHF) registry. Am Heart J 2020 227:56-63.
https://doi.org/10.1016/j.ahj.2020.06.002
5. Hill L, Baruah R, Beattie JM, Bistola V, Castiello T, Celutkiene J, et al. Culture, ethnicity, and socio-economic status as determinants of the management of patients with advanced heart failure who need palliative care: a clinical consensus statement from the Heart Failure Association (HFA) of the ESC, the ESC Patient Forum, and the European Association of Palliative Care. Eur J Heart Fail 2023 25(9):1481-92.
https://doi.org/10.1002/ejhf.2973
6. Reyes EB, Ha JW, Firdaus I, Ghazi AM, Phrommintikul A, Sim D, et al. Heart failure across Asia: same healthcare burden but differences in organization of care. Int J Cardiol 2016 223:163-7.
https://doi.org/10.1016/j.ijcard.2016.07.256
8. MacDonald MR, Tay WT, Teng TK, Anand I, Ling LH, Yap J, et al. Regional variation of mortality in heart failure with reduced and preserved ejection fraction across Asia: outcomes in the ASIAN-HF registry. J Am Heart Assoc 2020 9(1):e012199.
https://doi.org/10.1161/jaha.119.012199
11. Manuaba IB, Sutedja I, Bahana R. The evaluation of supervised classifier models to develop a machine learning API for predicting. ICIC Express Lett 2020 14(3):219-26.
https://doi.org/10.24507/icicel.14.03.219
16. Deschepper M, Eeckloo K, Vogelaers D, Waegeman W. A hospital wide predictive model for unplanned readmission using hierarchical ICD data. Comput Methods Programs Biomed 2019 173:177-83.
https://doi.org/10.1016/j.cmpb.2019.02.007
17. Stojanov D, Lazarova E, Veljkova E, Rubartelli P, Giacomini M. Predicting the outcome of heart failure against chronic-ischemic heart disease in elderly population: machine learning approach based on logistic regression, case to Villa Scassi hospital Genoa, Italy. J King Saud Univ - Sci 2023 35(3):102573.
https://doi.org/10.1016/j.jksus.2023.102573
19. Sanni RR, Guruprasad HS. Analysis of performance metrics of heart failured patients using Python and machine learning algorithms. Glob Transit Proc 2021 2(2):233-7.
https://doi.org/10.1016/j.gltp.2021.08.028
20. Bentejac C, Csorgo A, Martinez-Munoz G. A comparative analysis of XGBoost [Online]. Ithaca (NY): arXiv. org; 2019 [cited at 2024 Jul 31]. Available from:
https://arxiv.org/abs/1911.01914
21. Dai W, Brisimi TS, Adams WG, Mela T, Saligrama V, Paschalidis IC. Prediction of hospitalization due to heart diseases by supervised learning methods. Int J Med Inform 2015 84(3):189-97.
https://doi.org/10.1016/j.ijmedinf.2014.10.002
24. Frizzell JD, Liang L, Schulte PJ, Yancy CW, Heidenreich PA, Hernandez AF, et al. Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches. JAMA Cardiol 2017 2(2):204-9.
https://doi.org/10.1001/jamacardio.2016.3956