3. European Union. General Data Protection Regulation [Internet]. Brussels, Belgium: European Union; c2023 [cited at 2024 Jan 31]. Available from:
https://gdpr-info.eu/
4. US Centers for Disease Control and Prevention. Health Insurance Portability and Accountability Act of 1996 (HIPAA) [Internet]. Atlanta (GA): Centers for Disease Control and Prevention; c2022 [cited at 2024 Jan 30]. Available from:
https://www.cdc.gov/phlp/publications/topic/hipaa.html
6. Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I, Talwar K, et al. Deep learning with differential privacy. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security; 2016 Oct 24–28. Vienna, Austria; p. 308-18. https://doi.org/10.1145/2976749.2978318.
7. Dwork C. Differential privacy: a survey of results. In: Agrawal M, Du D, Duan Z, Li A, editors. Theory and applications of models of computation. Heidelberg, Germany: Springer; 2008. p. 1-19.
https://doi.org/10.1007/978-3-540-79228-4_1
10. Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 2018;321:321-31.
https://doi.org/10.1016/j.neucom.2018.09.013
11. Naehrig M, Lauter K, Vaikuntanathan V. Can homomorphic encryption be practical? Proceedings of the 3rd ACM Workshop on Cloud Computing Security; 2011 Oct 21. Chicago, IL, USA; p. 113-24. https://doi.org/10.1145/2046660.2046682.
12. Acar A, Aksu H, Uluagac AS, Conti M. A survey on homomorphic encryption schemes: Theory and implementation. ACM Computing Surveys 2018;51(4):79.
https://doi.org/10.1145/3214303
14. McMahan HB, Moore E, Ramage D, Hampson S, Arcas BA. Communication-efficient learning of deep networks from decentralized data [Internet]. Ithaca (NY): arXiv.org; 2023. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.1602.05629
15. Yoo JH, Jeong H, Lee J, Chung TM. Federated learning: issues in medical application [Internet]. Ithaca (NY): arXiv.org; 2021. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.2109.00202
16. Pfitzner B, Steckhan N, Arnrich B. Federated learning in a medical context: a systematic literature review. ACM Trans Internet Technol 2021;21(2):50.
https://doi.org/10.1145/3412357
17. Antunes RS, Andre da Costa C, Kuderle A, Yari IA, Eskofier B. Federated learning for healthcare: systematic review and architecture proposal. ACM Trans Intell Syst Technol 2022;13(4):54.
https://doi.org/10.1145/3501813
19. Nguyen DC, Pham QV, Pathirana PN, Ding M, Seneviratne A, Lin Z, et al. Federated learning for smart healthcare: a survey. ACM Comput Surv 2022;55(3):60.
https://doi.org/10.1145/3501296
20. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, et al. Advances and open problems in federated learning [Internet]. Ithaca (NY): arXiv.org; 2019. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.1912.04977
21. Li W, Milletari F, Xu D, Rieke N, Hancox J, Zhu W, et al. Privacy-preserving federated brain tumour segmentation [Internet]. Ithaca (NY): arXiv.org; 2019. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.1910.00962
24. Jimenez-Sanchez A, Tardy M, Gonzalez Ballester MA, Mateus D, Piella G. Memory-aware curriculum federated learning for breast cancer classification. Comput Methods Programs Biomed 2023;229:107318.
https://doi.org/10.1016/j.cmpb.2022.107318
25. Shen C, Wang P, Roth HR, Yang D, Xu D, Oda M, et al. Multi-task federated learning for heterogeneous pancreas segmentation [Internet]. Ithaca (NY): arXiv.org; 2021. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.2108.08537
26. Misonne T, Jodogne S. Federated learning for heart segmentation. Proceedings of 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP); 2022 Jun 26–29. Nafplio, Greece; p. 1-5.
https://doi.org/10.1109/IVMSP54334.2022.9816345
29. Andreux M, Terrail JO, Beguier C, Tramel EW. Siloed federated learning for multi-centric histopathology datasets [Internet]. Ithaca (NY): arXiv.org; 2020. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.2008.07424
30. Lu MY, Chen RJ, Kong D, Lipkova J, Singh R, Williamson DF, et al. Federated learning for computational pathology on gigapixel whole slide images. Med Image Anal 2022;76:102298.
https://doi.org/10.1016/j.media.2021.102298
31. Bercea CI, Wiestler B, Rueckert D, Albarqouni S. Feddis: disentangled federated learning for unsupervised brain pathology segmentation [Internet]. Ithaca (NY): arXiv.org; 2021. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.2103.03705
32. Ke J, Shen Y, Lu Y. Style normalization in histology with federated learning. Proceedings of 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI); 2021 Apr 13–16. Nice, France; p. 953-6.
https://doi.org/10.1109/ISBI48211.2021.9434078
33. Baid U, Pati S, Kurc TM, Gupta R, Bremer E, Abousamra S, et al. Federated learning for the classification of tumor infiltrating lymphocytes [Internet]. Ithaca (NY): arXiv.org; 2022. [cited at 2024 Jan 30].
https://doi.org/10.48550/arXiv.2203.16622
36. Xu Y, Ma L, Yang F, Chen Y, Ma K, Yang J, et al. A collaborative online AI engine for CT-based COVID-19 diagnosis [Internet]. Ithaca (NY): arXiv.org; 2020. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.1101/2020.05.10.20096073
37. Liu B, Yan B, Zhou Y, Yang Y, Zhang Y. Experiments of federated learning for COVID-19 chest X-ray images [Internet]. Ithaca (NY): arXiv.org; 2020. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.2007.05592
40. Yang Q, Zhang J, Hao W, Spell GP, Carin L. FLOP: federated learning on medical datasets using partial networks. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining; 2021 Aug 14–18. Virtual Event, Singapore; p. 3845-53.
https://doi.org/10.1145/3447548.3467185
41. Cetinkaya AE, Akin M, Sagiroglu S. A communication efficient federated learning approach to multi chest diseases classification. Proceedings of 2021 6th International Conference on Computer Science and Engineering (UBMK); 2021 Sep 15–17. Ankara, Türkiye; p. 429-34.
https://doi.org/10.1109/UBMK52708.2021.9558913
43. Qayyum A, Ahmad K, Ahsan MA, Al-Fuqaha A, Qadir J. Collaborative federated learning for healthcare: multi-modal COVID-19 diagnosis at the edge. IEEE Open J Comput Soc 2022;3:172-84.
https://doi.org/10.1109/OJCS.2022.3206407
45. Feng CM, Yan Y, Wang S, Xu Y, Shao L, Fu H. Specificity-preserving federated learning for MR image reconstruction. IEEE Trans Med Imaging 2023;42(7):2010-21.
https://doi.org/10.1109/TMI.2022.3202106
46. Yang Z, Xia W, Lu Z, Chen Y, Li X, Zhang Y. Hyper-network-based physics-driven personalized federated learning for CT imaging. IEEE Trans Neural Netw Learn Syst; 2023 Dec 15. [Epub].
https://doi.org/10.1109/TNNLS.2023.3338867
47. Roth HR, Chang K, Singh P, Neumark N, Li W, Gupta V, et al. Federated learning for breast density classification: a real-world implementation [Internet]. Ithaca (NY): arXiv.org; 2020. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.2009.01871
48. Malekzadeh M, Hasircioglu B, Mital N, Katarya K, Ozfatura ME, Gunduz D. Dopamine: differentially private federated learning on medical data [Internet]. Ithaca (NY): arXiv.org; 2021. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.2101.11693
50. Stripelis D, Ambite JL, Lam P, Thompson P. neuroscience research using federated learning. Proceedings of 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI); 2021 Apr 13–16. Nice, France; p. 1191-5.
https://doi.org/10.1109/ISBI48211.2021.9433925
53. Elayan H, Aloqaily M, Guizani M. Sustainability of healthcare data analysis IoT-based systems using deep federated learning. IEEE Internet Things J 2021;9(10):7338-46.
https://doi.org/10.1109/JIOT.2021.3103635
54. Elayan H, Aloqaily M, Guizani M. Deep federated learning for IoT-based decentralized healthcare systems. Proceedings of 2021 International Wireless Communications and Mobile Computing (IWCMC); 2021 Jun 28–Jul 2. Harbin, China; p. 105-9.
https://doi.org/10.1109/IWCMC51323.2021.9498820
55. Kassem H, Alapatt D, Mascagni P, Karargyris A, Padoy N. Federated cycling (FedCy): semi-supervised federated learning of surgical phases. IEEE Trans Med Imaging 2023;42(7):1920-31.
https://doi.org/10.1109/TMI.2022.3222126
56. Agbley BL, Li J, Haq AU, Bankas EK, Ahmad S, Agyemang IO, et al. Multimodal melanoma detection with federated learning. Proceedings of 2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP); 2021 Dec 17–19. Chengdu, China; p. 238-44. https://doi.org/10.1109/ICCWAMTIP53232.2021.9674116.
57. Borger T, Mosteiro P, Kaya H, Rijcken E, Salah AA, Scheepers F, et al. Federated learning for violence incident prediction in a simulated cross-institutional psychiatric setting. Expert Syst Appl 2022;199:116720.
https://doi.org/10.1016/j.eswa.2022.116720
58. Basu P, Roy TS, Naidu R, Muftuoglu Z, Singh S, Mireshghallah F. Benchmarking differential privacy and federated learning for BERT models [Internet]. Ithaca (NY): arXiv.org; 2021. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.2106.13973
59. Ge S, Wu F, Wu C, Qi T, Huang Y, Xie X. Fedner: privacy-preserving medical named entity recognition with federated learning [Internet]. Ithaca (NY): arXiv. org; 2020. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.2003.09288
60. Kanani P, Marathe VJ, Peterson D, Harpaz R, Bright S. Private cross-silo federated learning for extracting vaccine adverse event mentions [Internet]. Ithaca (NY): arXiv.org; 2021. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.2103.07491
61. Sui D, Chen Y, Zhao J, Jia Y, Xie Y, Sun W. FedED: federated learning via ensemble distillation for medical relation extraction. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP); 2020 Nov 16–20. Virtual Event; p. 2118-28.
62. Thwal CM, Thar K, Tun YL, Hong CS. Attention on personalized clinical decision support system: federated learning approach. Proceedings of 2021 IEEE International Conference on Big Data and Smart Computing (BigComp); 2021 Jan 17–20. Jeju, South Korea; p. 141-7. https://doi.org/10.1109/BigComp51126.2021.00035.
63. Yoo JH, Son HM, Jeong H, Jang EH, Kim AY, Yu HY, et al. Personalized federated learning with clustering: non-IID heart rate variability data application [Internet]. Ithaca (NY): arXiv.org; 2021. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.2108.01903
64. Zhang M, Wang Y, Luo T. 2020;December;Federated learning for arrhythmia detection of non-IID ECG. Proceedings of 2020 IEEE 6th International Conference on Computer and Communications (ICCC); 2020 Dec 11–14. Chengdu, China; p. 1176-80.
https://doi.org/10.1109/ICCC51575.2020.9344971
65. Can YS, Ersoy C. Privacy-preserving federated deep learning for wearable IoT-based biomedical monitoring. ACM Trans Internet Technol 2021;21(1):21.
https://doi.org/10.1145/3428152
67. Wu Q, Chen X, Zhou Z, Zhang J. Fedhome: cloud-edge based personalized federated learning for in-home health monitoring. IEEE Trans Mob Comput 2020;21(8):2818-32.
https://doi.org/10.1109/TMC.2020.3045266
69. Rajendran S, Obeid JS, Binol H, D Agostino R Jr, Foley K, Zhang W, et al. Cloud-based federated learning implementation across medical centers. JCO Clin Cancer Inform 2021;5:1-11.
https://doi.org/10.1200/CCI.20.00060
70. Choudhury O, Park Y, Salonidis T, Gkoulalas-Divanis A, Sylla I, Das AK. Predicting adverse drug reactions on distributed health data using federated learning. AMIA Annu Symp Proc 2020;2019:313-22.
72. Jaladanki SK, Vaid A, Sawant AS, Xu J, Shah K, Dellepiane S, et al. Development of a federated learning approach to predict acute kidney injury in adult hospitalized patients with COVID-19 in New York City [Internet]. Cold Spring Harbor (NY): medRxiv.org; 2021. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.1101/2021.07.25.21261105
74. Huang L, Shea AL, Qian H, Masurkar A, Deng H, Liu D. Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. J Biomed Inform 2019;99:103291.
https://doi.org/10.1016/j.jbi.2019.103291
75. Dang TK, Lan X, Weng J, Feng M. Federated learning for electronic health records. ACM Trans Intell Syst Technol 2022;13(5):72.
https://doi.org/10.1145/3514500
76. Mondrejevski L, Miliou I, Montanino A, Pitts D, Hollmen J, Papapetrou P. FLICU: a federated learning workflow for intensive care unit mortality prediction. Proceedings of 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS); 2022 Jul 21–23. Shenzen, China; p. 32-7.
https://doi.org/10.1109/CBMS55023.2022.00013
77. Xu X, Peng H, Bhuiyan MZ, Hao Z, Liu L, Sun L, et al. Privacy-preserving federated depression detection from multisource mobile health data. IEEE Trans Ind Inf 2021;18(7):4788-97.
https://doi.org/10.1109/TII.2021.3113708
78. Islam TU, Ghasemi R, Mohammed N. Privacy-preserving federated learning model for healthcare data. Proceedings of 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC); 2022 Jan 26–29. Las Vegas, NV, USA; p. 281-7. https://doi.org/10.1109/CCWC54503.2022.9720752.
79. Kalra S, Adnan M, Taylor G, Tizhoosh H. Learning permutation invariant representations using memory networks [Internet]. Ithaca (NY): arXiv.org; 2019. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.1911.07984
81. Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. Proceedings of 2017 International Conference on Engineering and Technology (ICET); 2017 Aug 21–23. Antalya, Türkiye; p. 1-6. https://doi.org/10.1109/ICEngTechnol.2017.8308186.
86. Wang Z, Song M, Zhang Z, Song Y, Wang Q, Qi H. Beyond inferring class representatives: user-level privacy leakage from federated learning. Proceedings of IEEE Conference on Computer Communications (INFOCOM); ; 2019 Apr 29–May 2. Paris, France; p. 2512-20.
https://doi.org/10.1109/INFOCOM.2019.8737416
87. Luo X, Wu Y, Xiao X, Ooi BC. Feature inference attack on model predictions in vertical federated learning. Proceedings of 2021 IEEE 37th International Conference on Data Engineering (ICDE); 2021 Apr 19–22. Chania, Greece; p. 181-92. https://doi.org/10.1109/ICDE51399.2021.00023.
88. Zhang J, Zhang J, Chen J, Yu S. GAN enhanced membership inference: a passive local attack in federated learning. Proceedings of 2020 IEEE International Conference on Communications (ICC); 5; 2020 Jun 7–11. Dublin, Ireland; p. 1-6.
https://doi.org/10.1109/ICC40277.2020.9148790
89. Hu H, Salcic Z, Sun L, Dobbie G, Zhang X. Source inference attacks in federated learning. Proceedings of 2021 IEEE International Conference on Data Mining (ICDM); 2021 Dec 7–10. Auckland, New Zealand. ; p. 1102-7. https://doi.org/10.1109/ICDM51629.2021.00129.
90. Bhagoji AN, Chakraborty S, Mittal P, Calo S. Analyzing federated learning through an adversarial lens [Internet]. Ithaca (NY): arXiv.org; 2018. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.1811.12470
91. Fang M, Cao X, Jia J, Gong N. Local model poisoning attacks to Byzantine-Robust federated learning. Proceedings of the 29th USENIX Security Symposium; 2020 Aug 12–14. Boston, MA, USA; p. 1605-22.
92. Tolpegin V, Truex S, Gursoy ME, Liu L. Data Poisoning Attacks Against Federated Learning Systems [Internet]. Ithaca (NY): arXiv.org; 2020. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.2007.08432
93. Zhang J, Chen J, Wu D, Chen B, Yu S. Poisoning attack in federated learning using generative adversarial nets. Proceedings of 2019 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE); 2019 Aug 5–8. Rotorua, New Zealand; p. 374-80. https://doi.org/10.1109/TrustCom/BigDataSE.2019.00057.
94. Fung C, Yoon CJ, Beschastnikh I. Mitigating sybils in federated learning poisoning [Internet]. Ithaca (NY): arXiv.org; 2018. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.1808.04866
96. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V. Federated optimization in heterogeneous networks [Internet]. Ithaca (NY): arXiv.org; 2018. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.1812.06127
97. Karimireddy SP, Kale S, Mohri M, Reddi SJ, Stich SU, Theertha Suresh A. Scaffold: stochastic controlled averaging for federated learning [Internet]. Ithaca (NY): arXiv.org; 2021. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.1910.06378
98. Li Q, Diao Y, Chen Q, He B. Federated learning on non-IID data silos: an experimental study [Internet]. Ithaca (NY): arXiv.org; 2021. [cited at 2024 Jan 30]. Available from:
https://doi.org/10.48550/arXiv.2102.02079
99. Fang H, Qian Q. Privacy preserving machine learning with homomorphic encryption and federated learning. Future Internet 2021;13(4):94.
https://doi.org/10.3390/fi13040094
101. Timmis A, Vardas P, Townsend N, Torbica A, Katus H, De Smedt D, et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J 2022;43(8):716-99.
https://doi.org/10.1093/eurheartj/ehab892
104. Gooch CL, Pracht E, Borenstein AR. The burden of neurological disease in the United States: a summary report and call to action. Ann Neurol 2017;81(4):479-84.
https://doi.org/10.1002/ana.24897