2. Bauer AM, Thielke SM, Katon W, Unutzer J, Arean P.. Aligning health information technologies with effective service delivery models to improve chronic disease care. Prev Med 2014 66:167-72.
https://doi.org/10.1016/j.ypmed.2014.06.017
5. Ministry of Science. Study on the effect of the IoT introduction. Seoul, Korea: Korea Association for ICT Promotion; 2015.
7. Moser LE, Melliar-Smith P. Personal health monitoring using a smartphone. Proceedings of 2015 IEEE International Conference on Mobile Services; 2015 Jun 27-Jul 2. New York, NY; p. 344-51.
https://doi.org/10.1109/MobServ.2015.54
8. Kulkarni A, Sathe S.. Healthcare applications of the Internet of Things: a review. Int J Comput Sci Inf Technol 2014;5(5):6229-32.
10. Lui TK, Tsui VW, Leung WK.. Accuracy of artificial intelligence-assisted detection of upper GI lesions: a systematic review and meta-analysis. Gastrointest Endosc 2020 92(4):821-30.
https://doi.org/10.1016/j.gie.2020.06.034
11. Lui TK, Guo CG, Leung WK.. Accuracy of artificial intelligence on histology prediction and detection of colorectal polyps: a systematic review and meta-analysis. Gastrointest Endosc 2020 92(1):11-22.
https://doi.org/10.1016/j.gie.2020.02.033
13. Nguyen AV, Blears EE, Ross E, Lall RR, Ortega-Barnett J.. Machine learning applications for the differentiation of primary central nervous system lymphoma from glioblastoma on imaging: a systematic review and meta-analysis. Neurosurg Focus 2018 45(5):E5.
https://doi.org/10.3171/2018.8.focus18325
17. Wang S, Zhang Y, Lei S, Zhu H, Li J, Wang Q, et al. Performance of deep neural network-based artificial intelligence method in diabetic retinopathy screening: a systematic review and meta-analysis of diagnostic test accuracy. Eur J Endocrinol 2020 183(1):41-9.
https://doi.org/10.1530/eje-19-0968
20. Tang CX, Wang YN, Zhou F, Schoepf UJ, Assen MV, Stroud RE, et al. Diagnostic performance of fractional flow reserve derived from coronary CT angiography for detection of lesion-specific ischemia: a multi-center study and meta-analysis. Eur J Radiol 2019 116:90-7.
https://doi.org/10.1016/j.ejrad.2019.04.011
22. Islam MM, Nasrin T, Walther BA, Wu CC, Yang HC, Li YC.. Prediction of sepsis patients using machine learning approach: a meta-analysis. Comput Methods Programs Biomed 2019 170:1-9.
https://doi.org/10.1016/j.cmpb.2018.12.027
23. Li Y, Zhang Z, Dai C, Dong Q, Badrigilan S.. Accuracy of deep learning for automated detection of pneumonia using chest X-Ray images: a systematic review and meta-analysis. Comput Biol Med 2020 123:103898.
https://doi.org/10.1016/j.compbiomed.2020.103898
24. Balayla J, Shrem G.. Use of artificial intelligence (AI) in the interpretation of intrapartum fetal heart rate (FHR) tracings: a systematic review and meta-analysis. Arch Gynecol Obstet 2019 300(1):7-14.
https://doi.org/10.1007/s00404-019-05151-7
25. Hassanipour S, Ghaem H, Arab-Zozani M, Seif M, Fararouei M, Abdzadeh E, et al. Comparison of artificial neural network and logistic regression models for prediction of outcomes in trauma patients: a systematic review and meta-analysis. Injury 2019 50(2):244-50.
https://doi.org/10.1016/j.injury.2019.01.007
26. Lee Y, Ragguett RM, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J Affect Disord 2018 241:519-32.
https://doi.org/10.1016/j.jad.2018.08.073
27. Alharbe N, Atkins AS.. A study of the application of automatic healthcare tracking and monitoring system in Saudi Arabia. Int J Pervasive Comput Commun 2014 10(2):183-95.
https://doi.org/10.1108/IJPCC-03-2014-0026
32. Balzarini F, Frascella B, Oradini-Alacreu A, Gaetti G, Lopalco PL, Edelstein M, et al. Does the use of personal electronic health records increase vaccine uptake? A systematic review. Vaccine 2020 38(38):5966-78.
https://doi.org/10.1016/j.vaccine.2020.05.083
38. Sushilan A.. Survey of real time healthcare. Int J Eng Sci Res Technol 2015;4(12):728-36.
39. Habibzadeh H, Dinesh K, Shishvan OR, Boggio-Dandry A, Sharma G, Soyata T.. A survey of healthcare Internet of Things (HIoT): a clinical perspective. IEEE Internet of Things J 2019 7(1):53-71.
https://doi.org/10.1109/JIOT.2019.2946359
40. Park YR, Son SY, Kim CW, Kang HY, Oh JS, Kim HY, et al. Internet evolution and socioeconomic paradigm change: focused on the Internet of Things. Jincheon, Korea: Korea Information Society Development Institute; 2015.
42. Alharbe N, Atkins AS, Akbari AS. Application of Zig-Bee and RFID technologies in healthcare in conjunction with the Internet of Things. Proceedings of International Conference on Advances in Mobile Computing & Multimedia; 2013 Dec 3. Vienna, Austria; p. 191-5.
https://doi.org/10.1145/2536853.2536904
44. Masterson Creber RM, Grossman LV, Ryan B, Qian M, Polubriaginof FCG, Restaino S, et al. Engaging hospitalized patients with personalized health information: a randomized trial of an inpatient portal. J Am Med Inform Assoc 2019 26(2):115-23.
https://doi.org/10.1093/jamia/ocy146
45. Dumitrascu AG, Burton MC, Dawson NL, Thomas CS, Nordan LM, Greig HE, et al. Patient portal use and hospital outcomes. J Am Med Inform Assoc 2018 25(4):447-53.
https://doi.org/10.1093/jamia/ocx149
46. O’Leary KJ, Lohman ME, Culver E, Killarney A, Randy Smith G, Liebovitz DM.. The effect of tablet computers with a mobile patient portal application on hospitalized patients’ knowledge and activation. J Am Med Inform Assoc 2016 23(1):159-65.
https://doi.org/10.1093/jamia/ocv058
50. Palen TE, Ross C, Powers JD, Xu S.. Association of online patient access to clinicians and medical records with use of clinical services. JAMA 2012 308(19):2012-9.
https://doi.org/10.1001/jama.2012.14126