1. Maron BJ, Friedman RA, Kligfield P, Levine BD, Viskin S, Chaitman BR, et al. Assessment of the 12-lead ECG as a screening test for detection of cardiovascular disease in healthy general populations of young people (12–25 years of age): a scientific statement from the American Heart Association and the American College of Cardiology. Circulation 2014 130(15):1303-34.
https://doi.org/10.1161/CIR.0000000000000025
2. Hao P, Gao X, Li Z, Zhang J, Wu F, Bai C. Multi-branch fusion network for Myocardial infarction screening from 12-lead ECG images. Comput Methods Programs Biomed 2020 184:105286.
https://doi.org/10.1016/j.cmpb.2019.105286
3. Rajkumar A, Ganesan M, Lavanya R. Arrhythmia classification on ECG using deep learning. Proceedings of 2019 5th International Conference on advanced Computing & Communication Systems (ICACCS); 2019 Mar 15–16. Coimbatore, India; p. 365-9.
https://doi.org/10.1109/ICACCS.2019.8728362
6. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000 101:e215-e220.
http://circ.ahajournals.org/cgi/content/full/101/23/e215
7. Taddei A, Distante G, Emdin M, Pisani P, Moody GB, Zeelenberg C, et al. The European ST-T database: standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography. Eur Heart J 1992 13(9):1164-72.
https://doi.org/10.1093/oxfordjournals.eurheartj.a060332
8. Jager F, Taddei A, Moody GB, Emdin M, Antolic G, Dorn R, et al. Long-term ST database: a reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia. Med Biol Eng Comput 2003 41(2):172-82.
https://doi.org/10.1007/BF02344885
10. Moody GB, Muldrow W, Mark RG. A noise stress test for arrhythmia detectors. Comput Cardiol 1984;11(3):381-4.
14. Moody GB. The PhysioNet/Computers in Cardiology challenge 2008: T-wave alternans. Proceedings of 2008 Computers in Cardiology; 2008 Sep 14–17. Bologna, Italy; p. 505-8.
https://doi.org/10.1109/CIC.2008.4749089
15. Kalyakulina AI, Yusipov II, Moskalenko VA, Nikolskiy AV, Kosonogov KA, Osipov GV, et al. LUDB: a new open-access validation tool for electrocardiogram delineation algorithms. IEEE Access 2020 8:186181-90.
https://doi.org/10.1109/ACCESS.2020.3029211
18. Donnelly K. SNOMED-CT: the advanced terminology and coding system for eHealth. Stud Health Technol Inform 2006;121:279-90.
20. Prineas RJ, Crow RS, Zhang ZM. The Minnesota code manual of electrocardiographic findings. New York (NY): Springer Science & Business Media; 2009.
21. Willems JL, Abreu-Lima C, Arnaud P, van Bemmel JH, Brohet C, Degani R, et al. The diagnostic performance of computer programs for the interpretation of electrocardiograms. N Engl J Med 1991 325(25):1767-73.
https://doi.org/10.1056/NEJM199112193252503
27. Baek SJ, Park A, Ahn YJ, Choo J. Baseline correction using asymmetrically reweighted penalized least squares smoothing. Analyst 2015 140(1):250-7.
https://doi.org/10.1039/c4an01061b