Machine Learning Model for the Prediction of Hemorrhage in Intensive Care Units
Sora Kang, Chul Park, Jinseok Lee, Dukyong Yoon
Healthc Inform Res. 2022;28(4):364-375.   Published online 2022 Oct 31     DOI: https://doi.org/10.4258/hir.2022.28.4.364
Citations to this article as recorded by Crossref logo
Prognosis of major bleeding based on residual variables and machine learning for critical patients with upper gastrointestinal bleeding: A multicenter study
Fuxing Deng, Yaoyuan Cao, Hui Wang, Shuangping Zhao
Journal of Critical Care.2025; 85: 154923.     CrossRef
Intensive care unit nurses’ experiences of nursing concerns, activities, and documentation on patient deterioration: A focus-group study
Mihui Kim, Yesol Kim, Mona Choi
Australian Critical Care.2025; 38(2): 101126.     CrossRef
A Combined Model of Vital Signs and Serum Biomarkers Outperforms Shock Index in the Prediction of Hemorrhage Control Interventions in Surgical Intensive Care Unit Patients
John P. Forrester, Manuel Beltran Del Rio, Cristine H. Meyer, Samuel P. R. Paci, Ella R. Rastegar, Timmy Li, Maria G. Sfakianos, Eric N. Klein, Matthew E Bank, Daniel M. Rolston, Nathan A Christopherson, Daniel Jafari
Journal of Intensive Care Medicine.2025; 40(6): 632.     CrossRef
Using nursing data for machine learning-based prediction modeling in intensive care units: A scoping review
Yesol Kim, Mihui Kim, Yeonju Kim, Mona Choi
International Journal of Nursing Studies.2025; 169: 105133.     CrossRef
A precise blood transfusion evaluation model for aortic surgery: a single-center retrospective study
Ji Che, Bo Yang, Yan Xie, Lei Wang, Ying Chang, Jianguo Han, Hui Zhang
Journal of Clinical Monitoring and Computing.2024; 38(3): 691.     CrossRef
Enhancing Trauma Care: A Machine Learning Approach with XGBoost for Predicting Urgent Hemorrhage Interventions Using NTDB Data
Jin Zhang, Zhichao Jin, Bihan Tang, Xiangtong Huang, Zongyu Wang, Qi Chen, Jia He
Bioengineering.2024; 11(8): 768.     CrossRef