![]() |
Development and Comparison of Three Data Models for Predicting Diabetes Mellitus Using Risk Factors in a Nigerian Population
Oluwakemi Odukoya, Solomon Nwaneri, Ifedayo Odeniyi, Babatunde Akodu, Esther Oluwole, Gbenga Olorunfemi, Oluwatoyin Popoola, Akinniyi Osuntoki
Healthc Inform Res. 2022;28(1):58-67. Published online 2022 Jan 31 DOI: https://doi.org/10.4258/hir.2022.28.1.58
|
Citations to this article as recorded by
A systematic review of machine learning methods for diabetes mellitus prediction and classification in Nigeria
Ukoba Obatavwe, Ukoba Joseph, Ochei Charles, Peter-Kio O. Boma, Anuku Omamuyovwi, Obi-Ntumeonuwa Matilda
International Journal Of Community Medicine And Public Health.2025; 12(6): 2828. CrossRef Data-driven diabetes mellitus prediction and management: a comparative evaluation of decision tree classifier and artificial neural network models along with statistical analysis
Idris Zubairu Sadiq, Babangida Sanusi Katsayal, Bashiru Ibrahim, Maryam Ibrahim, Hassan Aliyu Hassan, Umar Muhammad Ghali, Abdullahi Garba Usman, Abubakar Usman, Sani Isah Abba
Scientific Reports.2025;[Epub] CrossRef An optimized diabetes mellitus detection model for improved prediction of accuracy and clinical decision-making
Turke Althobaiti, Saad Althobaiti, Mahmoud M. Selim
Alexandria Engineering Journal.2024; 94: 311. CrossRef Machine-learning-based models for the optimization of post-cervical spinal laminoplasty outpatient follow-up schedules
Yechan Seo, Seoi Jeong, Siyoung Lee, Tae-Shin Kim, Jun-Hoe Kim, Chun Kee Chung, Chang-Hyun Lee, John M. Rhee, Hyoun-Joong Kong, Chi Heon Kim
BMC Medical Informatics and Decision Making.2024;[Epub] CrossRef
|